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Note that each value of y, may be characterizeq
points, J;, depending on the record, H,. In choosing 3 ¢ :
deal with the problem that K, the number of points ip ¢
necessarily equal to J, fori = 1,2, . . . M. The
based on the number of points in X as shown in the f

K I,
max i L i) <
i=1,2...M[H{EJ‘(P(Yu=

k=1 U j=1 "I

The probability density at each point designated
averaged over all points J; for each record. This probab
N equally distributed Gaussian components of variance. o

label, max i, in (3) is replaced by max ¢, and the te
brackets is summed over the number of records th_at

label, yielding an expression analogous to (2).
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INTRODUCTION

ibes the propertics of inteiligent pattern recognizers and the
ial Intelligence theory to attend to these properties. Towards the
enth and early in the twenticth century two profound insights
the world came about. Both attack the ideal rationalist explana-
and perception. First, in 1929 Szilard (cited in Resnikoff, 1985)
fasing entropy' corresponds to a gain in information?. Second,
Jennings (1906), and Thorndike (1898, 1911) established that
periences and preferences determine its behavior.® Spencer
€a that levels of intelligence could be viewed in terms of levels
€ between internal states and external circumstances; Jennings,
ontributor to the evolving science of behavior qua behavior;
at kind of contribution as well, but also for the law of effect, a
PS €xplain how internal state and external circumstance are
Pled together, these insights provide a basis for arguing that
Ul order thejr internal states> in response to machine—environ-

re ; . .
) of .the disorder of a system. For example, a material that changes it state
ases its entropy .

S inf ] . . .
& Ofmnation aboyt 5 physical quantity such as mass by increasing the resolu-
Of the quangity.

6 y )
50, tl 651) said that experiences and preferences determine behavior, em-
ater.

> Computationa] device, whether biological or manmade.
< Iepresent the tendency to respond.
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TABLE 7.1

ment interactions. These interactions will constrain the Jsolating a Causal Relation

state may assume and will affect the state of the envi
intelligence increases with the complexity of its interna]
environment interaction. Intelligence, therefore, is base
tive information acquisition and preservation.

In contrast, Artificial Intelligence (AI) theory assume
intelligence depends on understanding knowledge represe
tion. Knowledge acquisition is of secondary importance.
ate success in developing machines that function usefully in real domgj
Al theorizing includes models of adaptive mechanisms, Al machinesa:]
depend on human beings for programming, reproduction, and evolutior
never function as independent entities capable of solving a wide
problems.

True intelligence requires, among other things, the ability to recog
terns. Ascertaining conditions necessary for intelligent pattern recogn
help illuminate the shortcomings of current Al theory and suggest at
ligent cognitive-adaptive mechanism. This analysis relies on evidence
ogy and stage change theory. We argue that current Al theory wit
orientation fragments the nature of intelligence, which is not arbit
organic world. The construction of an intelligent machine depends not
designing systems that accumulate data and apply decision rules for
that information, but on certain organizing principles that are inferabl
natural evolutionary process. These biological and psychological pr
the focal points of this analysis. .

Valueg that ¢
fonment. A
order ang the
d on the notig

st

a regular, complex, and dyn;mic environment )

t with its environment using input and output devices
a preference for certain internal states

ictively using feedpack. )

past interactions w1th 1ts'env1ropment

e its concept formation hierarchically

in

S that upge
Ntation apq
Al has had o} W

ment: Regular, Complex, and Dynamic

t containing the IPR must have three characteristics. First, its
be regular, i.e., predicted on the lawfulness of cause and effect. It
e for the machine to construct a model of the environment that
jally successful in predicting future states of the environment.
ironment must be complex, i.e., nonuniform and multivariate,
s own structure, its inputs to and outputs from the machine. The
es that tasks posed to the machine by the environment cannot be
search or guessing. Third, variables representing the environ-
hine inputs, and machine outputs must change with time so that
ot solve all its tasks by converging to a fixed set of behaviors.
onment, having intelligence is not advantageous.
y, complexity, and dynamism are interdependent; without com-
ism there is no need for sophisticated processing, and without
no possibility of processing. The more numerous the degrees
‘- he greater the nonuniformity involved in the environment struc-
REQUIREMENTS FOR INTELLIGENT PATTERN ne inputs, the greater the internal order of the machine must be to
RECOGNITION | sure of the complexity of external inputs and structure that must
ied by a successful machine is thus a measure of the intelligence

Any intelligent pattern recognition machine (IPR) must be abie t(? 15C
relations. Otherwise the machine cannot know how to change 189
compensate for changes in the availability of such things as foodvl
danger. To isolate causal relations, a machine must POS5€ESS the r
listed in Table 7.1. Although these conditions may not suffice ‘Od
intelligent pattern recognition, they do correlate well with obsel'Veh A
havior (Dore & Dumas, 1987; Herrnstein, in press) and human be )
mons, Richards, & Armon (1984).6 We first discuss the naturefy ’
ples in detail and then present results demonstrating the necess!
tions.

the Environment

endency of physical systems is towards increasing disorder, or
.OIT_eSponds to a loss of information. Thus the environment in
WIE 1S embedded can be considered an entropy maximizer. The
¥E€T, continuously expends energy both to increase the scope,
d4CCuracy of its internal representation of its environment, and to
Oduction at least some of the internal representations it has
€ver the machine updates or generalizes its internal represen-
Ofmation and decreases entropy at its locale within the environ-

——— A .
o . ’ imals are |
6We do not make the distinction that humans are intelligent and ani e
H/

that humans possess greater internal complexity and thus greater intelli PY reducer, the machine stands in continuous conflict with
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its environment, an entropy maximizer. Moreover, the conflic istence of preferences and goals does not imply that the
cause the machine is by definition possessed of less pPowerfu] re. eate in a teleological fashion. Rather, they constrain the set of
environment; the machine is less complex and occupies ; % machine might make to a given internal or external
p pies jus that the g g

. . 3 t one | 5
the environment. Therefore, the interaction is environment dn'veno toria for choosing a response at any level of abstraction, whether
bl 0 1

en. The environment will pose challenges to the machine, anq not vi Janguage. does not equate to having a goal. Goals and plaqs are
the natural world, these challenges are posed via competition fol . that are formulated as a response to internal or extema.l stlmu.h
sources, ¢.g., mates and food, and the hostile nature of changes i : and therefore are nonteleological in nature desPite their use in
ment, e.g., a change from warm to cold temperature. The reSp() machine’s behavior. Plans and goals are explic.lt.statem.ents of
machine to input is an action on the environment that must have .1‘ nes, whereas preference may describe an il.’np.ll.Clt relation be-
persistent enough to influence future interactions. In summary, the Syste and outcomes. At the level of hardwired primitives of the ma-
described as a state machine, with events at time (t — 1) influencing | e does equate to functional output, but at cognitive levels prefer-
time (t). Of course, the state at time (t + 1) cannot affect behavior . '0 bottom-up’ constraints on stimulus—response pairings.

Additionally, all interactions must be predictable, though not pe
deterministic. The dynamism principle, which prevents the machine’s

of behaviors from converging to a fixed set, also prevents interactig ion Using Feedback

reaching equilibria, rather than forcing interactions to be unmodelah icit in the nonuniformity of the environment and the localization
novel inputs must have predictable results, though novelty may event The existence of novelty requires that the machine adapt its
the behavioral repertoire. If the environment structure represents at lea y internal preferences. Adaptation 1s not instantaneous; it re-
the physical laws (e.g., predator—prey relations, fluid turbulence) of loop in which (a) the environment acts on the machine, (b) the
world, then the need for regularity constrains parameter values in g how modified by the interaction, acts on the environment, (c) the
models of machine—environment interaction such that relations of inte on the machine again, and so on. In this process, the machine
machine cannot be instantiated with values leading to chaotic behavior. ng to the relative success or failure of each of its successive
intelligence obviously cannot develop in stable situations, it also canng , it learns through reinforcement.

out of interactions describable by chaotic nonlinear feedback models,: Herrnstein (1987) have described two kinds of adaptability. The

Verhulst (Peitgen & Richter, 1986) model for chaotic population grow rational—affecting just one machine. There are three subtypes:
anges in response—e.g., ducking a snowball; (2) long-term

Praforiios TarTeartain [nternal Stales onse—e.g., learning a languagc?; (3) metachanges—changes in
Ieir own responses—e.g., changing stage.

Entropy minimization occurs because the machine has a preference e vO classes of intragenerational learning mechanisms: supervised

internal states. Preference can be understood as a mechanism that eyal ed. Supervised intragenerational learning depends on the pro-

effect of an action by the environment on the organism. The machine ¢ e changes in the programs. Unsupervised intragencrational

use the evaluation to change the tendency of a behavior in responsl
interaction. In the organic world, preference can be interpfetgd as a cel
for oxygen, nutrients, neurotransmitters, or other hardwired blochemﬂz‘l
There may be other internal preferences. Without inte@al p.reference, °
undefined, reinforcement cannot affect behavior, and intelligence Cfi(l)'; .
op. The existence of preference implies that there must be a cost
from preference.
Preference provides a mechanism for selecting among g0
not imply that the organism works towards a goal su.ch as ol
Changes in the environment dictate the future changes 11 the ma of a rewat
For example, people are more willing to work for the Promlserk for the
previous promises have resulted in reward. The.y do notES _
itself, which has not occurred, but for the promise. =SSIng starts from the input and works upward.

€8 no other machine to modify its programs. Both depend on the
sharply with all other methods of knowledge acquisition, which
tof the IPR, e.g., programming a computer.
ind of adaptability is intergenerational—affecting machinés
1008. The assumption of a dynamic environment implies that the
vhich a response is used will vary. If those responses that prove
s, Preferent l’ rdyvired, th.ey will not have to be relea}med by ea.c'h .machine.
ward, ho¥ 88 18 determined by output, the system is self-stabilizing rather
i o's beh Ng (Vaughan & Herrnstein, 1987). More generally, as Vaughan
SUggest, natural selection is an Evolutionarily Stable Strategy
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(ESS), not an optimizing strategy. In biological termg harg
; > w
knowledge corresponds to favoring those mutations that ha
edge. In an artificial IPR, we remove the randomnesg fro
crippling natural selection.®
Adaptive systems of any kind require both a measure of ho
aflapt and a mechanism t.o accomplish the adaptation. These m,
nisms occur .at many different levels. At the highest level, the o
continued existence of the IPR. At a lower level, e.g., removing g
flame, the measure may be the intensity and duration of signals alop 1
pathways from the hand. At any level, though, the mechanism drivgi
: ng
can be schematized as a feedback pathway. Al models without feedback y
adapt. Hebb (1949) has described the essential component of biologica
as the adjustment of. cell connections in proportion to their usage. Fee
other implementations, though. It can be an efferent copy, a negative
expected or sclf-generated sensory input sent to the lower levels in the b
mask such input (Bell, 1981). For example, electric fish must mask the ¢
their electroreceptors when triggered by their own electric organ dis
Another kind of efferent copy is the presynaptic inhibition as used, for ¢
by the crayfish to suppress its tail-escape reflex that is stimulated
swimming motions.
The matching law (Herrnstein, 1970) and melioration (Herrnstei
Hermnstein. & Vaughan, 1980) can be understood as the basis for self-
mability on an implementation level. In a situation, each activity engag
be represented by a program. Reallocating the proportion of time engag
activity in a way that tends to equalize the reinforcement value obtained f
allocations is a form of self-programming. _
Using Hebb’s (1949) connectivity notion metaphorically, melior.a.tl g
specific machine or organism might be thought of as synapse facilitati
information pathways that are reinforced are used more and more Off
direction of growth and the length of axons are genetically co@ed, impl
the number of neurons with which a given neuron can synapse 15 severfel
by DNA. Because learning manifests itself physically as .the Synapses l.
reformed (plasticity) by the neurons, certain configurations of netWO_
evolutionarily favored. . .
Reproduction is not a preference of living organisms but

. .. : iod of time eXces

i nd collecting information over a period 0 .. ) hi ; : =5

il'lfsems;f)(;;p;s;rs\;i;gl e21 v orgorganism Reproduction allows change hierarchical processing stems from the machine’s need to respond
s ]

nvironment Wwider class of actions by the environment (Kehoe, in press). For
iri i f lower stage concepts for new en 1 3 . - p L} :
h“ig;??ﬁgﬁ‘i:‘;fﬁ;‘;ﬁ; by the Phyiical for§1 of the machine; and by mt?lthematlcs domain, the machine must learn to deal with number,
daptive 8¢ 5 then functions, etc.
of facing the novel hostilities that are necessary to produce & P ;
tion.

Machine—environment Interactions
mrci\:],:“‘ ember or store th'e effects of tl}e relationship between pasF events
A e degree tO which inputs are uniform and on the cost of failure. If
epeated, then remembering them or their effects would be useless.
4 also be impossible. If failure has no cost, then intelligence has no
or stupidity. More precisely, the machine must respond to non-novel
ay that reflects its past success or failure in responding to the stimuli.
be defined as outputs that meliorate hostile novelties or obtain
comes (Herrnstein & Vaughan, 1980), whereas failures may be
he nonoccurrence or loss of reinforcement. To have successfully
achine must produce successes without having to learn each time it
ith a similar situation.
t machines, however, remember in ways different from computers.
ore specific data in localized physical memory cells. Instead, intel-
nes remember by changing tendencies to produce a particular re-
a particular stimuli. (McClelland & Rumelhart, 1985; Rumelhart &
1985) The machine as a whole constructs a representation of an
er it may construct a representation of a stream of events. But no
ement within the machine contains a memory of an event, even
ate of any element is influenced by the dynamics of the net. Changes

. will produce changes in a given element. One cell does not define
e net even for a moment.

W much
casures g

1l Organization of Processing

F(1985) has shown, hierarchy is a powerful organizational principle
1formation processing in a variety of fields: neurophysiology, psy-
omputer science, developmental psychology, etc. Examples of
organized neural nets abound across all phyla, sometimes with quite
functional explanations. Stage theory, as developed by Piaget
extended by Commons and Richards (1984a,b) and others (Campbell
}986; Case, 1985; Fischer, 1980; Pascual-Leone, 1980), embeds
an adaptive Ve development from infant to adult in a hierarchically organized

_ _Processing must meet four conditions. First, later actions are
~€ 10 terms of earlier actions. Actions higher in the hierarchy depend
oS, Second, these higher actions organize the subsequent outputs

tions in the hierarchy. Third, this organization is not arbitrary.

i d on the
being base
8New programs and machines replace old ones, the newer ones
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Finally, the outputs of these organizing actions serve as inputs fort
stage in the hierarchy. Not all processing is hierarchical. Tran
across stimulus domains does not require construction of a pe
rather involves iteratively applying a set of actions from the g3
mons, Grotzer, & Davidson, in preparation).

Several clear examples exist of conceptual hierarchies that directly ¢
to anatomical hierarchies. Newman and Hartline (1981) have demonstrag
in the rattlesnake optic tectum inputs from afferent neurons sensitive to
and infrared light are integrated at the next level by interneurons that fall §
categories: neurons responding strongly to infrared and visual stimulj (I&
visual stimuli only (I-depressed V), to infrared or visual stimuli (I or V
These second-level concepts are integrated to give more abstract concepts
mopositive visual objects (e.g., a mouse or a hot rock) will be perceive
the infrared and visual (I & V) interneurons respond strongly and vis
interneurons respond weakly. Uninteresting (to the snake) thermoneutra
objects will be perceived when the visual-only interneurons fire intensel

A second example found by Matsubara (1981) also demonstrates
additional level of problem solving contributes to more successful b
Matsubara has compared the electrolocation systems of the weakly e.:Ie
Eigenmannia and Sternopygus. Electroreceptors of a fish respond to in
amplitude of the fish’s electric organ discharges caused by other fish o
Unfortunately for Eigenmannia, the electric fields of other fish ca
electroreceptors. However, jamming does not happen to .Stemopyguls.
ference is in the electroreceptors. Eigenmania has. twg k.md's:.Typ;: .
excited by amplitude increases, and Type IL which is 1nh1b1tfefir ye 2}
increases. In Sternopygus, though, 80% of its receptors arc 0 Typ
having two nonoverlapping receptive zonesilone functioning as a Lype
the other zone functioning as a Type II cell. . . »

In Eigenmannia, jamming, or any larg.e-fleld dlStu'rb?:;z’atit:ng)g;
Type I and Type II cell and generates n01seT(uselleﬁsC ;11 o efic
processing centers. In Sternopygus though, a Type e or
the responses of each of its 2 zones and thus Illot ;eeﬁough o oxtil
presence of a local, or small field, dlstlfrbance arg g
inhibitory zone or the excitatory zone w1.11 the Type ! °  zonc WOl
will respond as the cell type corresponding (o the trigg Srernopy2us

i i i causes 5

Thus, the jamming that works on Eigenmannia oo e filiering j

because it filters out 1arge-fieI.d disturbances - FUl:e:Si’n . hicrarchy- |
plished by adding an intermediate level in the pro

i the development of such processing in terms of concrete-to-formal-
tage transition in 172 lower and middle-class fifth- and sixth-grade
ra period of 6 years, using one of eight versions of Commons,
‘Kuhn'’s (1982) laundry problem.® An examination of this experiment
';v he hierarchical nature of learning. The mechanisms that were shown
for accomplishing stage change in this experiment can also
els for facilitating intelligent pattern recognition in Al theory.

he next
sfer of pe
W hierar,
me Stag

Problem: Introduction

nons and Davidson (Davidson, 1983; Davidson & Commons, 1983)
the laundry problem, subjects predict how a cloth will come out
seen washed in a given set of ingredients. The information given to
ominated by a causal variable that can be isolated and identified by
with the outcome of the various episodes while at the same time

all other variables. A detailed description of the laundry problem

problems is composed of 16 episodes, each including 4 indepen-
S (soap type, water temperature, bleach brand, and booster color),
/ an outcome variable (cloth cleanliness) as shown in Table 7.2. The
ese episodes are referred to as Informational Episodes. They give
igh information to determine the causal variable for the cloth out-
d bottles containing the actual cleaning agents were used to present
Each episode showed 4 combinations of pairs of washing agents:
booster, and bleach. Three of the Informational Episodes resulted in
*0ome of dirty; 3 in a cloth outcome of clean. The outcome was
d by actual clean and dirty cloths. Only 1 ingredient made a dif-
outcome followed the others in a constrained, random way.

odes, presented one at a time, followed the six Informational

each Test Episode, subjects were shown the four agents with
= ClOlth Wwas washed. The Informational Episodes were displayed
= S€ssion so that subjects could refer back to them and so that the
anables task was not confounded with a memory task. Subjects

¢ tl}e information from the Informational Episodes to determine
°ME in each of the Test Episodes. The formal-operational task-
;’V:S to detect which of four pairs of ingredients caused the cloth
HIERARCHICAL PROCESSING AND
STAGE CHANGE THEORY \
pserved 10
d David

as ’Ifie'rived from Kuhn and Brannock’s (1977) plant problem, which was derived
hier’s 1976, 1977) plant problem, which was based on Inhelder and Piaget’s

. . " 0
In the organic world, hierarchical processing may be ;
€M (also see Siegler, Liebert, & Liebert, 1973).

. T r. an
process of causality recognition. Commons, Grotzer,
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TABLE 7.2

The Cloth was Stained with Red Lipstick. It Was Washed in Each of Th
ese

7. HIERARCHICAL ORGANIZATION OF CONCEPTS 137

ijon of the experiment, one group of subjects were told whether
was correct or incorrect (feedback), which they did not care about.
yup of subjects received verbal feedback and points (reinforcing feed-
correct responses. These points were used in team competition for
bject received one point for hits (correctly predicting a clean out-
one point for correct rejections (correctly predicting a dirty outcome).

. of this experiment (Commons, Grotzer, & Davidson, in preparation)
ow the effectiveness of reinforcement in contrast to nonreinforcing
on stage change. Here, mean sensitivity represents the formal-opera-

yrmance of detecting which causal relation holds in a particular problem
'_ predicts the outcome of a given episode. Sensitivity to casual relations

nted by non-normal d’ (Commons, Kantrowitz, Buhlman, Grotzer &

ess; Kantrowitz, Buhlman, & Commons, 1985). Mean sensitivity of
ates the perfect detection of formal operational relationships, whereas a

itivity of O indicates performance at the chance level, indicative of
perations. The mean sensitivity to causal relations across all subjects

edback is plotted in the top panel of Fig. 7.1, with reinforcement
valued points as well as feedback) in the bottom panel of Fig. 7.1.

nforcing points, even with verbal feedback as to correctness, there was
ant improvement across trials (r> = .05). With the reinforcing points,

erational performance increased significantly (r2 = .59, p < .0005).

Iry problem has shown that three conditions are necessary for stage

irst, the subjects must be presented with a problem requiring perfor-
%

A Bleach Powder Soap Blue Booster Cold Water
B Bleach Liguid Socap Pink Booster Hot Water —
A Bleach Powder Soap Pink Booster Hot Water ol
B Bleach Powder Soap Pink Booster Cold Water —
A Bleach Liquid Soap Blue Booster Hot Water —
B Bleach Ligquid Soap Blue Booster Cold Water —= 3
Look Back at the Examples. MNow, Mark the Correct Ending
B Bleach Powder Soap Blue Booster Hot Water —_—
A Bleach Liguid Soap Blue Booster Cold Water o
A Bleach Powder Soap Pink Booster Cold Water —_
B Bleach Liguid Soap Blue Booster Hot Water —— -
B Bleach Powder Soap Blue Booster Cold Water ——
B Bleach powder Soap Pink Booster Hot Water —
A Bleach Liquid Soap Pink Booster Hot Water —_—
A Bleach Powder Soap Blue Booster Hot Water e
B Bleach Liquid Soap Pink Booster Cold Water —_—
P
A Bleach Liquid Soap Pink Booster Cold Water

Problem Presentation

Subjects were exposed to 16 problem presen?atio
months. The time between each test session varied.
experimenter asked which
were washed in the given combination of cle
would then probe for the subject’s descriptions
asked which of all possible combinations of var
bleach; or soap, bleach, and booster; gtc.) was most I
came out, and whether or not one variable made a

Copyright 1984.

Dare Association, Inc., Cambridge, MA.

outcome the subject thought wou
aning agents-
and explanatxons.

ns over aPPTOXima
For each Test EPISC
1d occur if the

esponsi '
difference 1

Stage higher than the subjects’ present stage. The problem may be
ed, but this delays the transition process tremendously. Second, the
ist receive feedback from their attempts at solving the problem. Final-
€Cts must have their successful problem solutions reinforced.
ey .problem also fulfills all the required conditions for intelligent
“€0gnition. The environment in which the student is placed involves
regularity (a fixed causal relation), complexity (three distractor
and dynamism (change in variable values). The game is interactive
%S or failure reported immediately so that the student takes part in an
feedback loop. Students’ biological preferences have led to a complex
dtmed behavior. As a result of the learned behavior, the biological
'ecarr}e manifested as psychological preferences for receiving a rein-
j » Without the strong preference for the reinforcing point, no recog-
*~ Causal pattern was acquired. The use of memory is clearly required

The expett
Subjects
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N
o

TABLE 7.3
Three Overall Strategies for Making Predictions
E

L Group 3. Presentction S
D=0.226+ 0.008 « TRIA

L r2=_05 ° oure guess (includes any manner of random choosing)

\ object dependence (based on information from outside
e experimental situation) - _—

irect matching (eight steps in transition from
concrete to formal)

T

could Form Three Strategies to Make Predictions:

stage-change process, three types of strategies are observed. These
ined in Table 7.3. The concrete operational pattern of action con-
y matching information in episodes to outcomes. This last strategy
mal operational matching, with subjects assessing which washing
h outcomes in both the Test Episode and Informational Episode.

O ®
0 2°4 6 8 015

|_Group 4. Presentatio
]'0_8‘ Reinforcement n,.Feed

L

get’s Four Step Model of Stage Change

SENSITIVITY TO FORMAL OPERATIONAL CAUSAL RELATIO

- ® y one stage is under consideration here, Piaget’s four-step model of
FIG. 7.1. Mean non-normal d’, = oe is most applicable to show how the direct matching pattern of
representing sensitivity to a o0 o elops. Piaget’s four-step, probabilistic model (Flavell, 1963) of
gamisehiclanismgeTS TS|t -Eeeh —® n illustrates the stage-change process. This model presents the steps
trial consisted of 10 predictions. % - SENL. o :
Iy the top panel, “Correct” fol- - D=0.440+0.024 » TRIAL ch a “‘new equilibrium’” comes about. The fgur steps that are said to
lowed correct predictions, and - r2 = .59 an equilibrium state are as follows: first, subjects attend to only one
“Incorrect,” wrong ones. In the - oblem; second, subjects begin to alternate between attending to one
bottom panel, points as well as 0 L L L L 3
verbal feedback followed cor- O 2°'4 & 8N ‘ . TABLE 7.4
rect predictions. TRIAL Piaget's Mode! of Equilibration as Seen in the Laundry Problem

bjects attend to washing agents in the test episode and
try to find an Informational Episode with the most similar
ashing agents. The problem allows for a match of two or -
. three agents. Subjects predict the outcome from that In-
formational Episode's set of washing agents. (Concrete)

because the students must play for more than one trial. Finally, that the
adapt and do so in a way that generates a new concept is shown next.

Subjects switch which washing agents they attend to in the

Tést Episode. They then find an Informational Episode with
the most similar washing agents. Subjects predict the out-
Come from that Informational Episode set of washing agents.

THE LAUNDRY PROBLEM AND LEARNING THEORY

Subjects attend to washing agents in the Test Episode and

Ly to find two or more informational episodes with the most.
imilar washing agents and the same outcome. The problem

. *SQUires that they ignore at least two variables to find

‘ugh a match. They predict outcome from these two or more
€plisodes.

Exploring the implications of these findings for Al research requires an
standing of the strategies used by the subjects in the laundry problem. A
the subjects may engage in a variety of activities while working on [;’e
problem, here the following are examined: the informatior subjects us€ 4

. . . . ities t0 5€
ways in which they used it; and the necessity for repeated opportunitie 168

¥Ubjects first attend to the Informational Episodes. They
100k for a washing agent that always predicts clean. They

g . ve i - : - - :
problem, with feedback and reinforcement. To understand the de . ngn try to find that single washing agent in the Test Epi-
: : : gt lanations choice data € that matches. Although they use only on washing agent,
strategies without appealing to subject’s explana , rationi ;tsometimes produces both clean and dirty clothes. Most
(Kuhn & Brannock, 1977). Stein and Commons (1987; in prep | predi 'Shoen there is an increase in errors at this point for a
onverbal P i Tt period of time. (Abstract)

verbal explanations and descriptions develop later than the 1

il
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not unintelli .
ple, in is()l;tgifelgtae ]:/CO'd g take' place (Campbell & Bickhard
element that will f?rlable in a situation like the laund » 1986). ol o
requisite rand irst bring the subject to attend tory problem, it s  ryp :
Some st Omness 1s a learning factor that Al th one do
that the c: s detecti()n process are environmeory .h
used toy me about without any chan ki ental;
s create representations is a propert extemal e
ickhard, 1986). perty of those intern
The advanta .
ge of reducing the discrimi
spondent conditioning i g the discrimination steps t
tificial Intellige;gslljfnlz xthat. respondent conditioning li)s e;)si?;e:: stel:ps in ol
the laundry probl ; .amman(')n of the complex type of 2oy ed in Ar.
contemporarl; Aleglle((i)ert;ﬂe(:i previously will then Clan'pfy bo:t?riﬁ?ﬁmpg sconf
P and s imitar
might successfully exploit uggest features of the learning proce;sattll?;ts Aof
| I

as largely p
e
others are ing egrl:Cted_

. Al
nvironment. The L, in

al processes (Cami)(;fcilcl
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the stimuli is also a re-

ement for the two respondent conditioning steps of operant conditioning.
jng will not proceed until the subject treats the critical stimuli in the

ditioning situation as salient.
nt-conditioning process. As pointed

The laundry problem depicts this opera
jer, subjects were presented with the Informational Episodes and the first

est Episode. Assume that the following two outcomes have the following
operties before the operant conditioning begins:.Hearing “correct’’ and receiv-
ing 2 point for their team together is an exciting reinforcer. These events have a

ry of leading to prizes. Hearing «incorrect’” and receiving no point is a

histo
weak punisher. For operant conditioning to take place in this case, the decision

preceding choice would have to be salient,!? as would the relationship between
d the state of the cloth. The Appendix presents a

Jearning tO take place.!! This connection between

diagrammatic illustration of the process.
duction, the <ewhat to do’’ step, subjects

In the first conditioning step in the e
come to attend to their internal decision. 13 The what-to-do step makes the cause

of the operant response salient. That internal decision to make a given choice
gerves as an internal stimulus that elicits their choice. In the example, this choice
is a correct or incorrect prediction of clean or dirty. On each occasion, they
attend to this newly salient decision because it is predictive of a highly salient
.14 Thus the subjects learn what it is that they plan to do to obtain
This new decision to act in a certain way must compete with old
parts of the new decision must compete with old

point reinforce
the reinforcer.
decisions. In this instance, all
preconceived notions about how to do laundry.

In the second conditioning step, the <“when and where to do it’”’ step, subjects

ious types of external stimuli and distinguish the relevant

discriminate among var
n this case, the stimulus to be discriminated is the relationship between

stimuli. T
the controlling ingredient and the state of the cloth. This relationship can be seen
f ingredients on the table and the state of the cloth

by examining the bottles o
placed next to them. The decision to predict clean or dirty, being highly salient,

can be conditioned to correspond to the external stimuli that are already highly
salient. This conditioning occurs because the relationship between the control-
ling ingredient and the state of the cloth is a stimulus that is predictive of a highly

I
1A stimulus is known to be salient 1
12The decision preceding choice and the events ass

the subject when it regularly elicits an external response.
13This step is relatively new in conditioning theory. For examples se€ Bindra (1976) and Com-

mons and Armstrong-Roche (1984). The decision is internal because, without electrophysiological

measurement, it is not directly observable whereas the choice that follows the internal decision is

directly observable. The decision is the transient plan that precedes the choice.
14§ome of the salient characteristics elicited by ‘correct’” and ‘‘point’’ come to bee

internal decision.

f it regularly elicits some external response.
ociated with that decision become salient to

licited by the




144 COMMONS AND HALLINAN

sal;ent stimulus—the decision to choose clean or dirt
salient, this second step would not proceed Likewiy.
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:;;);I'd n(l)lt' prl;)ceed. The conjunction of these salient stim
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operational pattern recognition, as seen earliez in Fig 37“; - Promotigg forma)
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PATTERN RECOGNITION AS A MODEL FOR
ARTIFICIAL INTELLIGENCE
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et llt_omnpu ; 1_ntemal state, and output). Then when provided with an
e tp put pair, DART uses a theorem-proving technique (resolution
. 0 generate a suspected broken component, generate an input—output
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ause novelty within the chosen domain is disallowed. For example, what
pens if the device model provided by the programmer is wrong? The hard
blems are defined to lie outside the domain, effectively leaving the system in
state of stasis. Other Al successes, like XCON (McDermott, 1982),
DENDRAL (Lindsay, Buchanan, Feigenbaum, & Lederberg, 1980), and MY-
CIN (Shortliffe, 1976), share the same fault.
In fact, many of the common problem-solving paradigms in Al are not con-
ducive to handling novelty. Goal-reduction is a method of recursively decompos-
ing a problem into subgoals until a subgoal can be equated with some known
procedure or knowledge. Means—end analysis, a control paradigm, finds a solu-
tion path through a graph by moving to the node or subproblem that most reduces
the distance between the program’s current state and goal state. Constraint-
propagation reduces labels of nodes on a graph describing the solution space.
The space of tasks that can be solved by these techniques and other common Al
techniques (see Winston, 1984) is exactly the space of tasks that can be solved by
the programmer-supplied primitives. In essence, these techniques are all meth-
ods for searching a knowledge base, and, as shown earlier, search does not
suffice. A program can be given knowledge of the set of integers and arithmetic
operations, but unless it has a mechanism for generalization—Ilearning new
concepts—it will not be able to solve an algebraic equation containing a vari-
able, because the notion of variable must be learned and is not reducible to
notions of specific integers.
The second argument Al theory maintains against emphasizing learning is that
previous systems failed to acquire knowledge because learning requires some
previous knowledge. This is in effect a belief in creationism, for it claims that
intelligent mechanisms cannot bootstrap themselves from ground zero, in direct
contrast with the evidence of evolutionary theory. While humans do begin life
with an impressive array of hardwired cognitive abilities, humans also have to
have many years of experience before their cognitive abilities approach maturity.
To take another perspective, consider the mapping M that takes machine input
to machine output. Then M can be represented by the composition of a series of
submappings M1, M2, M3, . .. where M1 might be a low-level vision pro-
cessor (e.g., the lateral-geniculate nucleus), M2 might be a higher level vision
processor (€.£., area 17), and M3 might be a recognition function, and so on.
Each of these submappings must take as input the output of the previous map-
ping. One therefore cannot arbitrarily choose representations for the knowledge
processed by intelligent systems. The representations must have a place in the
system as a whole. Learning to manipulate arbitrarily chosen knowledge bases
for arbitrarily chosen tasks is by definition independent of the submappings
comprising M. In addition, there is no reason to suppose that knowledge repre-
sentations chosen are correct.

In fact, to truly adapt a system to a particular environment, it must not start
with any preconceptions about the environment. Recent research indicates that
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there may exist natural modes, or natural categories (Commons, Herrp,
Wagner, 1983; Herrnstein & Loveland, 1964; Hermstein, Loveland
1976) that reflect a good tradeoff between the ease of Categorizh;
amount of information gained by placing an object in the category. Th
are environment specific.

A major difference between animals and machines is that animals deriv
representations of information from experience, whereas present Al machine:
simply have been encoded by their programmers. A machine that works with
encodings can only generate copies or translations (Fodor, 1975, 1981), which
tend to preserve information and do more of the same task. Doing more of the
same clearly involves no learning (Campbell & Bickhard, 1987).

Yet another argument against beginning with much knowledge is that the
amount of data impinging on humans, and by extension on any machine in a
sufficiently complex environment, is so vast that a large portion of the informa-
tion must be discarded. The machine must learn to attend to only the most salient
aspects of the input. The knowledge base that the machine develops will there-
fore reflect the most salient information and that cannot be decided independent-
ly of the response of the environment to machine input.

Obeying the principle of adaptation poses perhaps the most difficult challenge
to Al theory. As suggested previously, the degree of adaptibility demanded
within a domain is an index of the domain’s usefulness in a divide-and-conquer
approach to intelligence. Too often, systems are designed to recognize pre-
established regularity. Categorizing typewritten characters is one task domain
that has been solved by statistical and feature-based methods, but it is significant
that handwritten character recognition, an only slightly less trivial domain, has
only been solved with learning techniques.

Marr’s theory of competence (Marr, 1982), which has served as a framework
for much of recent vision research, offers some insight into the Al perspective.
This framework exploits Chomsky’s distinction between performance and com-
petence in its use of a three-tiered hierarchy to relate the different possible levels
of explanation. The problem of vision may be taken as solved when it can be
completely described at the level of: (1) a theory of competence describing the
goals, assumptions, inputs, and transforms necessary to achieve the goals; (2)
representations of the input, output, and intermediate data, and algorithms in-
stantiating the necessary transforms; and (3) implementation, i.e., neural or
electronic circuitry instantiating the algorithms and representations. Together the
levels of description dictate performance, which can be matched against the
results of psychophysics and neurophysiology to assess the correlation between
theory and human behavior. If the failures and the successes of the theory match
human failures and successes, then the correlation is taken to be high. This is the
essential idea of the Turing Test, though strengthened by the applications of
natural constraints.

Whereas this approach engenders goal-directed vision systems, the very goal
'ascribed to the system by the theory of competence must correspond to the goal
of the human system, and it is clear that the only goal from which system
pehavior is generated is by definition. Though machine preferences are constant
over time, environmental conditions are not, and so the mechanisms that are
needed to satisfy those demands must change. Theories of competence that
suppose a fixed goal fail adaptability criteria. In the particular case of low-level
vision, Marr’s level of explanations may hold, but only because low-level vision
consists of hardwired primitives that cannot adapt. Theories of competence work
for low-level hardwired processes, but not for higher processes.

Complementing the process of self-organization (adaptation) is the process of
self-stabilizing (Vaughan & Herrnstein, 1987). Self-monitoring mechanisms
must be developed that compile or hardwire frequently useful behaviors. The
gain in response time increases the likelihood of success in a highly dynamic
environment. Additionally, hardwired or compiled structures are the ones that
would be most useful to transfer to copies of the machine that are to exist in the
~ same environment.

A major objection of Al to learning theory is that machines that construct their
own representations may not tell us anything about how humans solve their
problems, or, more generally, do not explain how thought actually works. This
objection rests on the assumption that there is some particular representation of
knowledge or particular way of manipulating knowledge that underlies all intel-
ligence. There is no clear reason to assume this, and many reasons not to. It may
be true that there is a common adaptive mechanism and that the learning mecha-
nism constrains the representations available. But in this case one has to tackle
the problem of adaptation first, not second as Al theorists would like to do.

stein, &
& Cable,
£ and the
€3¢ modeg

CONNECTIONIST MODELS

The recent connectionist approach to intelligence does address the problem of
adaptability. Whereas previous perceptron models could only compute linear
transformations of input data, current neural nets can construct internal represen-
tations of input data that are not linearly related to the input. Rumelhart (1987)
has developed a distributed-knowledge, supervised learning technique called
back propagation that is successful at a wide range of tasks, such as reading
English out loud and discriminating submarine echoes from noise in sonar data
(Sjenowski, 1986). Fukushima, Miyake, and Ito (1983) have developed a
localized-knowledge, supervised network that displays deformation and position
invariance in learning to categorize handwritten arabic numerals. Other variants
abound (Anderson, 1983; Barto, Sutton, & Anderson, 1983; Grossberg, &
+ Mingolla, 1985a,b; Hopfield, 1982, 1984). These techniques, however, in gen-
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APPENDIX

A Formalization of the Reduction: Initial Steps

The stimulus—response pairings of classical conditioning can be used to reduce
the more complex, two-stage process of operant conditioning to a single ex-
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TABLE 7.6
Symbol Definitions Without Their Subscripts for the Reduction

{a) cr = an internal response for which there is
causal sequence

(b) CR = conditioned response

(¢) CS = conditioned envirommental stimulus t
elicit a response

(d) p( ) = probability of

(e) s = stimulus in the environment to be conditioned

(f) §E = discriminative stimulus
(g)-t = time
(h) us = internal stimulus that precedes an o

This is the short form of EEN

(1) US = environmental stimulus that alread

(3) ...

no observable

hat has come to

perant response.

: y elicits a response
first event has a second event programmed to follow

/T ®
/ .

(k) - = one event elicits another

(1) -—> = one event elicits another

(m) === = leads to, over a number of presentations

(ny 170 . . . . .
| | = vertlcal'dashed lines identify the specific elementsg
| | to.be paired. The line points to the single letter
El E2 which will be paired.
: // . C = pairing operations

o) o @ Ol = o--=--
|
!

(p) o = pairing operation (i.e., the existence of one stimulus
is dependent on the occurrence of the other stimulus)

(@) p( 1) = conditional probability, probability of one event
given that another has occurred

(r) uppercase italicized letters = presently observable events

(s) lowercase italicized letters = internal events that are

potentially observable

< = less than or equal to
(u) > = greater than or equal to
(v} , = and

(w) Xl/x2 = an event with properties Xy and Xy

pression. The detection process outlined in Table 7.5 describes the same process
in linear form. Step 2 in Table 7.5 corresponds with pairing #1a in expression 3;

steps 3 and 4 correspond with pairing #2. The symbols used to diagram this
reduction are defined in Table 7.6.

Diagram of the Proposed Reduction
Respondent conditioning is written in traditional form as follows:
S o US----- —> UR (1)

After conditioning:

CS o — CR (2)
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tion in step 1 and US could be

¢ itua 5
ould be the cHpeilig to elicit the same transforma

. 3 ion comes
: ers. The situatio L
- reinforcers and punish and reinforcers.

s to the punishers Y e, relating the US
.nshof t‘trlxer;:;?)(‘)‘réiit conditioning only on;c1 P?xrlfi)c‘ée ::Efig:lﬁﬁoning two other
Thus 1 ther hand, 1n O addi-
: the S/CS. On the O ivings altogether: the two
einforcer) tO Thus there are three pairngs D
i ’ : tral §,/S" as
ritical Ra}nrig;a?rcifll;s and the pairing of the US> with the neu 1
al critica g

3. in terms of the laundry problem.

- To illustrate: Sc

ion :
shown in Expression

pairing #12a

US,/ SR+ .
- ‘point & “correct

[er-us -—>R.....(12n .
internal events/ ] sazmgcfezi
(decision) ,’ when le

e 0 pairing #1b

pairing # 2 ',' 0

i
el ! ' 3
critical washing agent

esult in the following chain

of events:

US,/S** .
point & “correct

These three pairings T

— (us—CR) — R .- -
CS/SP — (us 2 saying clean

itical salient
(\::/;;hing internal when clean "
t
agent even |
introduction of the
iri 2 (step 3 and 4), the intro ;
After pairing #1a (step 2) and pairing # (step et CRoy ol

- . /SP elicits the respons i <.). The
critical WaShiggbZS?:ISigid as part of the little us complex, (s CR,/CS,)
has previous ¥

’ g >
pIObablllt, Of these tesponses Cll Z(I :) has IDCIeased because m palrul ig 2 the
C()!npleX tl lat ehClKS the ICSpOHSG haS been palted Wltll the CIlVlronmeIltal Stl[“ulus
Sl . IheSC [eSpOIlSGS Claz 1 y by the dell\/e[ Ulg Of ﬂle

were originally elicited on
prize (US>) and R was origin

ally elicited only by us.




